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1. Introduction

Background
» Semiconductor lasers of circular geometry have many potential

advantages for applications including laser display, printers, optical
interconnects, sensing and THz wave generation.

2D array formation
beam shaping function

gratings are “stitched” together
with sectors [1]

Circular-Grating-Coupled Surface Emitting Lasers

[1] S. Kristjansson, M. Li, N. Eriksson, M. Hagberg, K.-J. Killius, and A. Larsson, IEEE Photon. Technol.
Lett., vol. 9, p. 416, 1997.



1. Introduction

Background
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X S-section waveguide
N

Laser with MMI coupler [3]

p-electrodes

/ BCB insulating layer
\\ Ring cavity

Facet mirror

Ring laser with directional coupler [2]

Narrow ridge
HR coating active channels

DBR gratings
Narrow ridge
_Y-branch waveguide amplifier

AR coating

n-electrode
Facet mirror

Application for THz
Monolithic dual-wavelength diode lasers [4] wave generation

[2] M. Osinski, H. Cao, C. Liu, and P. G. Eliseey, J. Cryst. Growth, vol. 288, no. 1, pp. 144-147, Feb. 2006.
[3]S. Matsuo and T. Segawa, |IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 545-554, 2009.
[4] M. Uemukai, H. Ishida, A. Ito, T. Suhara, H. Kitajima, A. Watanabe, and H. Kan, Jpn. J. Appl. Phys., 51, 020205 (2012).



1. Introduction

Technological issues
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. Introduction

A|m of My Work

» My research subjects are the study of integrated
semiconductor lasers having circular geometry, aiming to the
application for beam shaping function and THz wave
generation .

CGCSEL with focusing Single mode RFP Laser Two-wavelength RFP Laser
function

» In my thesis work, | demonstrate the design, fabrication and
experimental results of those lasers.



2. Circular-Grating-Coupled Surface Emitting Laser

CGCSEL with Focusing Function

» InGaAs based CGCSEL which emits light at 980 nm wavelength
was designed, fabricated and evaluated.

| designed the DBR n .

and GC by Coupled Focus —> Beatr_nlshtaping_ for
articie trappin
Mode Theory P PpINg
DBR ‘ Multiple spot formation
Circular ——
ctive regio
GC

>
InGaAs SGW




2. Circular-Grating-Coupled Surface Emitting Laser

Design of Circular DBR
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Active region
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n, refractive index of air
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Wave vector diagram of 3™ order DBR



2. Circular-Grating-Coupled Surface Emitting Laser

Design of Circular GC with Focusing
Function .

Applying phase matching condition,

. . F
period A(r) of the 15t order grating ocus
coupler with focusing function can be
written as:
Neffko + ngkosind (r) = K(r)
2T 2T 27T o
Nerr—— +—sinf(r) = ——= Radiation
7 A A ( ) /1(7‘) f into air
A(r) = ——=

nako, s
6(r) o(r)!
/< B = Nerrko -

<€

K(r), grating vector Xi ----------
=

Wave vector diagram of 15t order grating coupler
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2. Circular-Grating-Coupled Surface Emitting Laser

Calculation results for DBR and GC

based on the Coupled Mode Theory and Transfer Matrix Method
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2. Circular-Grating-Coupled Surface Emitting Laser

Fabrication of CGCSEL

» Formation of circular active region

» [ have written a computer program to control the electron
beam writing system with circular scanning mode.

Electron beam writing

SrF, layer CH,/H, and CF,/H, RIE
O O O 1 I A
R ——— ; SRR Circular
ZEP 520A EB resist actve
region
GRIN SCH layers In-situ monitoring was
InGaAs QW done

GaAs substrate



2. Circular-Grating-Coupled Surface Emitting Laser

Fabrication of CGCSEL

» DBR and grating coupler fabrication

Circular DBR and GC were fabricated by electron beam

TY lithography employing the smooth circular scanning and two
........................................ Ste RIE.
............ P EB writing
Grating patternin EB resist
PN
A A A )>(

EB wrltng by
Circular scanning @

@ CF4/_H2 RIE CH,/H, RIE CF,/H, RIE
of SiO, layer @ of grating layer @ of SiO, removal

» p-side and n-side electrode formation




2. Circular-Grating-Coupled Surface Emitting Laser

Fabricated CGCSEL

d DBR and GC gratings of almost uniform duty ratios were
fabricated.

DBR
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Optical microscopic image of SEM images of the DBR and the chirped GC.
the fabricated CGCSEL. Inset is the cross sectional view of the DBR.



2. Circular-Grating-Coupled Surface Emitting Laser

Lasing Characteristic of the
CGCSEL

A Single mode lasing was accomplished.
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P-I characteristic of the CGCSEL lasing spectrum measured at 115mA



2. Circular-Grating-Coupled Surface Emitting Laser

Focusing Function

Intensity variation comparable to a Image p'a”?f

cos?¢ dependence corresponding to
lasing in TE,; mode.

Emission patterns at different distances
z from the laser surface at an injection
current of 140 mA




3. Theoretical Analysis and Design of Ring/Fabry-
Perot Composite Cavity Lasers

Pad Electrode BCB insulating layer p-electrodes

BCB insulating layer
Facet mirror
Ring cavity

n-electrode Output
Facet mirror

« Simple fabrication because it does not require
narrow gaps or deep etching
« Useful for of THz wave generation



3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Composite Resonator

| |
! — ‘|
D | L "
n - — C — C
e __ ¢ ! — ¢
FP cavity: frm' = 2Lnpe T Afp = 2LNFeg

Nre (Ngey)y Nee (N effective (effective group) refractive
indices

m, m’. mode numbers for the ring and FP cavities



3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers
Lasing condition

Composite cavity ring/FP laser with
active ring and FP section

I

Complex round trip gain =1

Cc' — ne—j'[%ZnR ? _ L
TATR e /2L =1 Gp = eI7R

‘k E———

1 — Ce~JB2mR

L =P +j%: complex propagation constant
g : intensity gain factor
n=CC' +SS'

—C' + nGre /PR
"aTB\ T G pe-iB2mR

2
) G e /B2l =1 (1)




3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Lasing condition

Assuming ng, = ng, = n, and

ow

NReg = NFeg = Neg WRmM—1 WRmN Wrm+1 @
W = Wpy, + ow

PUtting B =12 = Brm + 68 = Brm +—L6w in (1)

Phase condition:

_CI +nGRe_j6ﬁ2T[R
: arg{ 1 — CGre JoR2nR }

— 2(Brm + 6B)L = —2Mm  (2)

M : is the composite mode

Amplitude condition: number

(nGr — C')? + 4C'nGg sin*(6BmR) .
(1 —CGg)? + 4CGgsin?2(6BnR) “

AT

(3)



3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Lasing condition |
Wpm'—1 Wpm/! Fm'+1
FP modes )
Casel: Wpym = w @rm-1  |@Rm WRm+1
Rm Fm/ Ring modes W

Phase condition is satisfied by w = wgm = wrp,,. Hence the

composite cavity mode is at this frequency.

A
LHS of AC

Amplitude Condition:

2
ned™k — ('’ .
ATR (1 — CegﬂR ) eg =1

TATR |

Composite mode can lase only if >
Gr|C] < 1 0 Jtn \ g

rare|C'1%G, < 1 Gr =1/C




3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers
s jAw

Lasing condition

Case ll: Wgpm F Wrpy' FP modes W
Aw K Awpg, Awp

WRrm-1 lem WRrmM+1 .
.. Ring modes A e
Phase condition: © = Wgpy + 60

_CI +nGRe—j6,82T[R
arg{ 1 — CGre JOB2TR

} —2(88 — AB)L = —2(M — m")m

For C < G < %, |6B2nR| < 1 and M =m', we have

Ap
op = ;
1+ GrSS'2TR
(mGr — C")(1 — CGRr)L
Since, 0 < % <1 hence 0 < i—z < 1, the composite cavity mode

frequency w is between the FP mode and ring mode i.e., wgy, < weey <
Wrm! OF Wpp! < Weem < Wrm-



3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Lasing condition

Case ll: Wpym # Wy , Aw K Awp, Awg

Amplitude (ne9™R — C")?% + 4C'ne9™R sin?(5BR)

. . gL =
condition: "B (1 —Ce9™ )2 4 4Ce9™ sin?(5FnR) - !

A
LHS of AC

Increasing R




3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Selection of Lasing Mode

For the case of 2R<L<mtR, Af> Aty
and common electrode for
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current injection e
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3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Two-Wavelength Lasing

With separate electrodes for

. . . Output
current injection Ay, by
, Mee T N |

mOdeS f}; 1 f};m “+1 f}rm s, X ” f}?m “+k-1 .f}?m “+k -
: /

Ring Afr .

modes | for1  |Sam  frmr1 [rmeo _ _ Vrm+i | SRk

/

Expected Afce .

lasing >

spectrum fc M |f CCM+1 -




3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Two-Wavelength Lasing
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3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Two-Wavelength Lasing
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3. Theoretical Analysis and Design of Ring/Fabry-Perot Composite Cavity Lasers

Design of RFP Laser

» GaAsygcPy14 tensile strained single- s
quantum_we“ (SQW) in a Separate | Facet mirror Coupiing region  Facet mifror|

confinement heterostructure (SCH) with . W=3um
Gag 41Ny 49P guiding layers.

aAsP QW

» Using by effective index method, ridge
width and height were determined.

ridge structure

> o, vs R was calculated by the beam
propagation method (BPM).

-
)]

-
o

[4)]

» R=400 um was determined, and L=950
um was selected as to satisfy 2R<L<nR.

Bend Loss Factor o_[/cm]

2%0 250 300 350 400 450 500
Ring Radius R [um]



4. Single-Mode RFP Composite Cavity Lasers

Pad Electrode BCB insulating layer

n-electrode

« Novel device structure
« Simple fabrication process
« Stable single mode operation



4. Single-Mode RFP Composite Cavity Lasers

Fabrication of RFP Laser
The designed RFP laser was fabricated by using a GaAsP SQW
epitaxial structure.

Guiding layer

s gw Ridge formation by electron
beam (EB) lithography and

reactive ion etching (RIE).

SEAS SUOSTEE —
Cr/Au
AuGe/Au Planarization of entire
p-side and  n-side sample by BCB layer.

electrode formation.



4. Single-Mode RFP Composite Cavity Lasers

Fabricated Single mode RFP Laser

O Fabricated waveguide has smooth and almost vertical
side wall.

W=3um

Ridge height
1.45um

98um >
Top view Cross section
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Optical microscopic image SEM images



4. Single-Mode RFP Composite Cavity Lasers

Lasing Characteristic
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> Single mode operation of the RFP laser was achieved
with a side mode suppression ratio (SMSR) greater
than 25 dB.



4. Single-Mode RFP Composite Cavity Lasers

Temperature Dependence

> Lasing spectra showed the shift of the peak towards longer
wavelength region similar to the gain peak shift.
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lasing spectra of the RFP laser temperature dependence of lasing wavelength



5. Two-Wavelength RFP Composite Cavity Lasers

p-electrodes

BCB insulating layer
Facet mirror
Ring cavity

Facet mirror

« Simple fabrication process
« Useful for THz wave generation
« Wavelength tunable lasing



5. Two-Wavelength RFP Composite Cavity Lasers

RFP Laser with Separate Electrodes

Ridge height
1.55 um

x1.80k BB43 25KV SOvm

Optical microscopic and SEM images



5. Two-Wavelength RFP Composite Cavity Lasers

Lasing Characteristic
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5. Two-Wavelength RFP Composite Cavity Lasers

Obtained Two—wavelength Lasmg

Spectra

> Currents were injected to both of
the ring and straight
waveguides.

» [l,was increased slowly and
carefully observing the lasing
spectrum.

» Accomplished two-wavelength
lasing with discrete sets of
separations.
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5. Two-Wavelength RFP Composite Cavity Lasers

Lasing performances

Table I: Summary of driving conditions and obtained two-
wavelength lasing performances.

Injection Obtained two- | Wavelength Power Beat
currents wavelength separation difference |frequency f;-f,

I, 1z [mA] lasing A, A, Ay [mW] [THz]
[nm] [nm]

100, 163 801.7, 806.0 4.3(=7A\cc) 3.34 0.11 2.00

110, 163 803.3, 805.1 1.8(=3AA¢() 4.39 0.0 0.83

120, 100 798.7,799.7 1.0(=2AM () 4.46 0.0 0.47

150, 84 801.7, 805.4 3.7(=6AN() 7.50 0.16 1.72

For this Laser, | AAqc|=1(4%/c)Afe|~0.59 nm calculated by using ng,, = ng,, = 3.624 for
the effective group refractive indices.



6. Conclusions

>

Stitching error free CGCSEL was fabricated by EB lithography
employing smooth circular scanning. Single-mode-like lasing
was accomplished and the focusing function was confirmed.

ldea of a novel all-active circular ring / FP composite cavity
semiconductor laser was presented. Analysis of lasing threshold
and selection of lasing modes were also presented.

An RFP laser with common p-electrode was fabricated. Stable
single longitudinal mode operation was accomplished.

RFP laser with separate p-electrodes was also fabricated. Two-
wavelength lasing with discrete sets of separations were
accomplished.

For the first time, I was able to fabricate the stitching error free circular
gratings for such a large size device. This unique fabrication technique
would further accelerate the research on this type of lasers.

I also accomplished the two-wavelength lasing with almost equal
powers from a single RFP laser for the first time. This device could be a
promising candidate for the source of THz wave generation by
photomixing process.
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