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 Semiconductor lasers of circular geometry have many potential 
advantages for applications including laser display, printers, optical 
interconnects, sensing and THz wave generation.  

[1]  S. Kristjansson, M. Li, N. Eriksson, M. Hagberg, K.-J. Killius, and A. Larsson, IEEE Photon. Technol. 
Lett., vol. 9, p. 416, 1997. 

gratings are “stitched” together 
with sectors [1] 

• 2D array formation 
• beam shaping function 

Circular-Grating-Coupled Surface Emitting Lasers 



[2] M. Osiński, H. Cao, C. Liu, and P. G. Eliseev, J. Cryst. Growth, vol. 288, no. 1, pp. 144–147, Feb. 2006. 
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Monolithic dual-wavelength diode lasers [4] 

Ring laser with directional coupler [2] 

Laser with MMI coupler [3] 

Application for THz 
wave generation 
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EB writing of circular grating 
by ELS3700S 

field size 80µm × 80µm field size 500µm × 500µm 

Circular gratings of fine 
groove (<100 nm) over 

large area (~500 µm)  
 



 My research subjects are the study of integrated 
semiconductor lasers having circular geometry, aiming to the 
application for beam shaping function and THz wave 
generation .  

 In my thesis work, I demonstrate the design, fabrication and 
experimental results of those lasers. 

CGCSEL with focusing 
function  

Single mode RFP Laser Two-wavelength RFP Laser 
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 InGaAs based CGCSEL which emits light at 980 nm wavelength 
was designed, fabricated and evaluated. 

I designed the DBR 
and GC by  Coupled 
Mode Theory 

Multiple spot formation 

Beam shaping for 
particle trapping 



Wave vector diagram of 3rd order DBR 
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3rd order coupling coefficient 𝜅3 
was calculated by: 

3 is the amplitude of 3rd order  
       Fourier component. 
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Applying phase matching condition, 
period 𝛬 𝑟  of the 1st order grating 
coupler with focusing function can be 
written as: 
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Wave vector diagram of 1st order grating coupler  

 𝑟   𝑟𝑎  𝑛       𝑟

 = 𝑁𝑒𝑓𝑓𝑘0

𝑛𝑎𝑘0

𝜃(𝑟)

f

Chirped GC

r

x

𝜃 𝑟

Focus

Radiation 
into air



3 =159 cm-1 

1+2= 
0.02 cm-1 

Third-order DBR 

Duty ratio = 0.75 
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Dependence of air, sub and Pair on the 
GC groove depth calculated by assuming 
abs = 40 cm-1 . 

Pair = air/(air+sub+abs) 

Dependence of third-order coupling coefficient 
3 and total radiation decay factor 1+2 on 
the DBR groove depth. 
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based on the Coupled Mode Theory and Transfer Matrix Method  



 Formation of circular active region 

 I have written a computer program to control the electron 
beam writing system with circular scanning mode. 
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DBR and grating coupler fabrication 
Circular DBR and GC were fabricated by electron beam 
lithography employing the smooth circular scanning and two 
step RIE. 

 p-side and n-side electrode formation 



Fabricated CGCSEL 
 DBR and GC gratings of almost uniform duty ratios were 

fabricated.  

457.8 nm 

170 nm 

Third-order  

DBR 

First-order  

GC 

Active  

region 

DBR 

GC 

100 µm 

SEM images of the DBR and the chirped GC. 
Inset is the cross sectional view of the DBR. 

Optical microscopic image of 
the fabricated CGCSEL.  



Lasing Characteristic of the 
CGCSEL 

 Single mode lasing was accomplished.  

P-I characteristic of the CGCSEL  
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Focusing Function 

500 µm 

z= 0 mm z= 1.5 mm 

z= 4.5 mm z= 3.0 mm 

Emission patterns at different distances 
z from the laser surface at an injection 
current of 140 mA 
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Image plane Intensity variation comparable to a 

cos2 dependence corresponding to 
lasing in TE1 mode. 



3. Theoretical Analysis and Design of Ring/Fabry-
Perot Composite Cavity Lasers 

• Simple fabrication  because it does not require 
narrow gaps or deep etching 

• Useful for of THz wave generation 
 



𝑓𝑅𝑚 =
𝑐

2𝜋𝑅𝑛𝑅𝑒
𝑚,       Δ𝑓𝑅 =

𝑐

2𝜋𝑅𝑛𝑅𝑒𝑔
 Ring cavity: 

FP cavity: 𝑓𝐹𝑚′ =
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nRe (nReg), nFe (nFeg): effective (effective group) refractive 
indices 
m, m : mode numbers for the ring and FP cavities 



 Complex round trip gain =1 

  𝐺𝑅 =  𝑔𝜋𝑅  
𝐺𝐿 =  𝑔𝐿 

Composite cavity ring/FP laser with 
active ring and FP section 
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: complex propagation constant 

  : intensity gain factor 
𝜂 = 𝐶𝐶′ + 𝑆𝑆′  



Assuming 𝑛𝑅𝑒 = 𝑛𝐹𝑒 = 𝑛𝑒 and  

𝑛𝑅𝑒𝑔 = 𝑛𝐹𝑒𝑔 = 𝑛𝑒𝑔 
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number  Amplitude condition: 
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Case I: 

Phase condition is satisfied by 𝜔 = 𝜔𝑅𝑚 = 𝜔𝐹𝑃𝑚′ . Hence the 
composite cavity mode is at this frequency.  
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Case II: 
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Increasing 𝛿𝛽𝜋𝑅  
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LHS of AC 

Δ𝜔 ≪ Δ𝜔𝑅  Δ𝜔𝐹  



For the case of  2R<L<πR, fF> fR 

𝑓 

𝑓 

Δ𝑓𝐹 

Δ𝑓𝑅 

𝑓𝑅𝑚 𝑓𝑅𝑚+1 𝑓𝑅𝑚+2 𝑓𝑅𝑚+3 𝑓𝑅𝑚+4 

𝑓𝐹𝑚′  𝑓𝐹𝑚′+1 𝑓𝐹𝑚′+2 𝑓𝐹𝑚′+3 

Ring modes 

FP modes 

𝑓𝐹𝑚′−1 𝑓𝐹𝑚′+4 

𝑓𝑅𝑚+5 𝑓𝑅𝑚+6 𝑓𝑅𝑚−1 

and common electrode for 
current injection  

Δ𝑓𝐶𝐶 ≈
Δ𝑓𝐹Δ𝑓𝑅

Δ𝑓𝐹 − Δ𝑓𝑅
 



With separate electrodes for 
current injection  



With separate electrodes for 
current injection  

If  the injection current to the ring 
section is increased 



With separate electrodes for 
current injection  

If  the injection current to the ring 
section is increased more 



 GaAs0.86P0.14 tensile strained single-
quantum-well (SQW) in a separate 
confinement heterostructure (SCH) with 
Ga0.51In0.49P guiding layers.  
 

 Using by effective index method, ridge 
width and height were determined.  
 

 b vs R was calculated by the beam 
propagation method (BPM).  
 

 R=400 µm was determined, and  L=950 
µm was selected as to satisfy 2R<L<πR. 

ridge structure 



4. Single-Mode RFP Composite Cavity Lasers 

• Novel device structure 
• Simple fabrication process 
• Stable single mode operation 



Ridge formation by electron 
beam (EB) lithography and 
reactive ion etching (RIE). 

The designed RFP laser was fabricated by using a GaAsP SQW 
epitaxial structure. 

Planarization of entire 
sample by BCB layer. p-side and n-side 

electrode formation. 

GaAs substrate 

1.45µm 



Fabricated Single mode RFP Laser 
 Fabricated waveguide has smooth and almost vertical 

side wall. 

20µm 

3µm 

950 µm 

800 µm 

Optical microscopic image SEM images 
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Lasing Characteristic 

 Single mode operation of the RFP laser was achieved 
with a side mode suppression ratio (SMSR) greater 
than 25 dB. 

P-I characteristic of the RFP laser lasing spectra of  FP and RFP lasers 
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Temperature Dependence  

 Lasing spectra showed the shift of the peak towards longer 
wavelength region similar to the gain peak shift. 

lasing spectra of the RFP laser 
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5. Two-Wavelength RFP Composite Cavity Lasers 

• Simple fabrication process 
• Useful for THz wave generation 
• Wavelength tunable lasing  



RFP Laser with Separate Electrodes 

Optical microscopic and SEM images 

2R=790 µm

L=1090 µm

3.0 µm

(a) (c)

(b)

Ridge height 
1.55 µm 



Lasing Characteristic 

P-I characteristic of the RFP laser 
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Obtained Two-wavelength Lasing 
Spectra  

 Currents were injected to both of 
the ring and straight 
waveguides.  

 

 IR was increased slowly and 
carefully observing the lasing 
spectrum. 

 

 Accomplished two-wavelength 
lasing with discrete sets of 
separations. Two-wavelength lasing spectra 
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Lasing performances  

Injection 

currents 

IF, IR [mA] 

Obtained two-

wavelength 

lasing 1, 2 

[nm]  

Wavelength 

separation 

2-1  

[nm] 

Total 

output 

power 

[mW] 

Power 

difference 

[mW] 

Beat 

frequency f1-f2 

[THz] 

100, 163 801.7, 806.0 4.3(7CC) 3.34 0.11 2.00 

110, 163 803.3, 805.1 1.8(3CC) 4.39 0.0 0.83 

120, 100 798.7, 799.7 1.0(2CC) 4.46 0.0 0.47 

150, 84 801.7, 805.4 3.7(6CC) 7.50 0.16 1.72 

Table I: Summary of driving conditions and obtained two-
wavelength lasing performances. 

For this Laser, |CC|=|(2/c)fCC|0.59 nm calculated by using nReg = nFeg = 3.624 for 
the effective group refractive indices.  



6. Conclusions 
 Stitching error free CGCSEL was fabricated by EB lithography 

employing smooth circular scanning. Single-mode-like lasing 
was accomplished and the focusing function was confirmed. 

 Idea of a novel all-active circular ring / FP composite cavity 
semiconductor laser was presented. Analysis of lasing threshold 
and selection of lasing modes were also presented. 

 An RFP laser with common p-electrode was fabricated. Stable 
single longitudinal mode operation was accomplished.  

 RFP laser with separate p-electrodes was also fabricated. Two-
wavelength lasing with discrete sets of separations were 
accomplished.  

 For the first time, I was able to fabricate the stitching error free circular 
gratings for such a large size device. This unique fabrication technique 
would further accelerate the research on this type of lasers.  

 I also accomplished the two-wavelength lasing with almost equal 
powers from a single RFP laser for the first time. This device could be a 
promising candidate for the source of THz wave generation by 
photomixing process.  
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